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Measurement of brain change due to neurodegenerative disease and treatment is one of the fundamental
tasks of neuroimaging. Deformation-based morphometry (DBM) has been long recognized as an effective
and sensitive tool for estimating the change in the volume of brain regions over time. This paper
demonstrates that a straightforward application of DBM to estimate the change in the volume of the
hippocampus can result in substantial bias, i.e., an overestimation of the rate of change in hippocampal
volume. In ADNI data, this bias is manifested as a non-zero intercept of the regression line fitted to the 6 and
12 month rates of hippocampal atrophy. The bias is further confirmed by applying DBM to repeat scans of
subjects acquired on the same day. This bias appears to be the result of asymmetry in the interpolation of
baseline and followup images during longitudinal image registration. Correcting this asymmetry leads to
bias-free atrophy estimation.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Neuroimaging will play an important role in future clinical trials
of disease-modifying treatments for Alzheimer's disease (AD) and
other neurodegenerative disorders. One of the great promises of
neuroimaging is that it will allow shorter and smaller clinical trials,
thus reducing the costs of developing a successful treatment.
Macroscopic changes in brain anatomy, detected and quantified by
magnetic resonance imaging (MRI), consistently have been shown
to be highly predictive of AD pathology and highly sensitive to AD
progression (Scahill et al., 2002; de Leon et al., 2006; Jack et al.,
2008b; Schuff et al., 2009). Compared to clinical measures and
neuropsychological testing, MRI-derived biomarkers require an
order of magnitude smaller cohort size to detect disease-related
changes over time. Theoretically, such biomarkers will be equally
effective in detecting the effects of disease-modifying treatments,
and will allow smaller and shorter clinical trials.

Deformation-based morphometry (DBM) is a widely used and
cost-effective technique for estimating longitudinal brain atrophy
ushkevich).
btained from the Alzheimer's
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(Chung et al., 2001; Studholme et al., 2004; Leow et al., 2006). To
measure atrophy in a given anatomical structure across two time
points with DBM, one must (1) label the structure of interest in the
baseline image; (2) perform deformable image registration between
the baseline image and the followup image; and (3) measure the
change in volume induced by the deformation on the structure of
interest. With many automatic segmentation and registration
algorithms available as free software, DBM has become a very
accessible and low-cost technique for longitudinal image analysis.
DBM also offers advantages in terms of statistical power, particu-
larly when compared with the frequently used alternative (e.g.,
recent work on hippocampal atrophy by Schuff et al., 2009) of
segmenting the structure of interest in each time point, and taking
the difference in the volumes of the segmentations. This alternative
is subject to repeat measurement errors, whereas DBM measures
the difference between time points more directly.

However, one of the drawbacks of DBM for atrophy estimation
is its susceptibility to bias. In general, bias can occur when a system
of measurement is not blinded to the independent variables. In the
context of a study like Schuff et al. (2009), the segmentation of the
structure of interest in different time points is performed
independently; it may even be randomized, and the individuals
performing the segmentation may be blinded to avoid bias
completely. However, in the context of DBM, it is not as
straightforward to blind the method to which image is the
baseline image, and which images are followup images. Specific
aspects of underlying registration methodology, usually obscured
ippocampal atrophy using deformation-based morphometry arises
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Table 1
Summary of the relevant characteristics of the subset of ADNI subjects included in this
study.
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from the user, can cause atrophy to be systematically over-
estimated or underestimated.

Such bias strongly undermines the utility of DBM in neuroimaging
biomarker research. Overestimation of atrophy in a pilot study can
cause the subsequent clinical trial to be underpowered, leading to a
waste of resources and an unnecessary burden on the patients.
Presence of bias alsomakes it difficult to compare the statistical power
of different atrophy estimation methods.

In this paper, we examine the bias associated with DBM in the
context of measuring hippocampal atrophy in mild cognitive
impairment (MCI) and healthy aging. The data for this study
come from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
(Mueller et al., 2005; Jack et al., 2008a), a large multicenter MRI
imaging study. We propose two techniques for measuring bias in
estimation of hippocampal atrophy. The first technique examines
the intercept of the regression line fitted to atrophy estimates from
6- and 12-month longitudinal data. The second technique uses
repeat scans from a single time point, where we expect to find zero
atrophy in the absence of DBM-related bias. With both techniques,
we find substantial, statistically significant bias when using
“routine” DBM with no built-in bias correction. The bias is of the
same order of magnitude as the known rate of hippocampal atrophy
in MCI. Bias of this magnitude would lead to severe underpowering
of a subsequent clinical trial.2 In subsequent analysis, we find that
DBM-associated bias can be eliminated if the global transformation
between the baseline image and the followup image is applied
symmetrically. Symmetric application of the deformable transforma-
tion between baseline and followup images does not affect the bias
significantly in our experiments.

This paper is organized as follows. Materials and methods section
discusses the subset of ADNI data used in this study and the DBM
methodology that we employ. Experimental results section describes
the results of atrophy measurement experiments with and without
bias correction. Discussion section discusses how the findings relate to
other work on longitudinal brain atrophy estimation, including
previous work on unbiased techniques. The conclusions of this
paper are in the last section.

Materials and methods

Subjects and imaging data

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.
loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials.
The Principle Investigator of this initiative is MichaelW.Weiner, M.D.,
VA Medical Center and University of California San Francisco. ADNI is
the result of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the United States and Canada.
2 Underpowering occurs when the absolute rate of atrophy in MCI patients is used
as the basis for sample size calculations. Our results show that if relative atrophy (i.e.,
MCI vs. control) is used, the effect of bias on sample size becomes insignificant.
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The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to
participate in the research—approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people withMCI to be
followed for 3 years, and 200 people with early AD to be followed for 2
years.

ADNI MRI data includes 1.5 T structural MRI from all 800
subjects and 3 T structural MRI from 200 subjects. Our study is
conducted using only 3 T MRI, and it only includes data from MCI
patients and controls. We also use only a subset of the imaging time
points in ADNI: baseline, 6 and 12 months. The demographic
characteristics of the subjects whose data are included in this study
are given in Table 1.

The MRI imaging protocol for ADNI is described by Jack et al.
(2008a). Each session includes a T1-weighted high-resolution MP-
RAGE scan, a repeat MP-RAGE scan, a pair of low-resolution B1
calibration scans, and a TSE scan weighted for proton density and T2
contrast. Phantoms are used to ensure scanner parameters and
performance remain consistent across imaging sessions. ADNI per-
forms some post-processing of the imaging data. Researchers at the
Mayo clinic compare the two MP-RAGE scans acquired in every
imaging session and designate one of the scans as having superior
quality. The superior scan is then post-processed by ADNI researchers.
The specific post- processing procedures are MRI scanner specific. At
the most, they include “corrections in image geometry for gradient
nonlinearity, i.e., 3D gradwarp (Hajnal et al., 2001; Jovicich et al.,
2006); corrections for intensity nonuniformity due to nonuniform
receiver coil sensitivity (Narayana et al., 1988); and correction of
image intensity nonuniformity due to other causes such as wave
effects at 3 T” (Jack et al., 2008a). The raw, unprocessed MP-RAGE
scans are also available in the ADNI database. We use all three of these
images in this study. We refer to the post-processed image as Ipp, the
raw superior image as Irs and the raw inferior image Iri.

Hippocampal atrophy estimation with deformation-based morphometry

We begin by describing what we consider the “established” DBM
pipeline. Later, we discuss the modifications to the pipeline used to
remove bias. The standard DBM pipeline for hippocampal atrophy
estimation includes four basic steps:

(1) Segmentation. The left and right hippocampus is labeled in each
subject's baseline image.

(2) Global Registration. The followup image at time t is aligned to
the baseline image using a linear global coordinate
transformation.

(3) Deformable Registration. A locally varying, high-dimensional,
smooth and invertible (i.e., diffeomorphic) transformation is
computed between the baseline image and the aligned
followup image.

(4) Atrophy Estimation. The change in volume induced by the local
transformation is computed throughout the hippocampus ROI
and integrated over the ROI to calculate total atrophy.

The sections below describe each of these four steps in slightly
more detail. Each step is implemented using freely available open-
source tools. Later in the paper, we repeat some of the analysis with
alternative tools, and find that the findings largely transcend the
choice of tool.
Group N MMSE Age (year) LHV (mm3) RHV (mm3)

MCI 80 26.7±1.9 74.3±7.8 1455±323 1406±348
Control 57 29.4±0.8 75.4±4.8 1782±277 1704±290

ippocampal atrophy using deformation-based morphometry arises
I data, NeuroImage (2010), doi:10.1016/j.neuroimage.2009.12.007
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Segmentation
The left and right hippocampal regions of interest (ROI),

consisting of the hippocampus proper, dentate gyrus, a small medial
portion of the subiculum, and including alveus and some intra-
hippocampal cerebrospinal fluid, is segmented in each baseline
image. We use a hybrid segmentation approach, where an initial
segmentation is computed automatically using landmark-guided
registration to a labeled brain atlas. This segmentation is then edited
by a trained human operator to produce the final segmentation. This
approach saves a great deal of time over fully manual segmentation,
without compromising segmentation quality. Our approach is
similar to the one used by ADNI researchers at UCSF to segment
1.5 T MRI ADNI data (Schuff et al., 2009; Hsu et al., 2002; Haller et
al., 1997). The details of our approach are given in Pluta et al.
(2009).

Global registration
Global (six or nine-parameter) registration is used to bring the

baseline image and the followup image of each subject into global
alignment. Global registration is performed using the FLIRT software
from the FSL suite (Smith et al., 2004). The algorithm in FLIRT
searches for the linear transformation that minimizes the correla-
tion ratio metric between the two images. We specify the baseline
image as the reference image and the followup image as the moving
image.

In this paper, we primarily use the six-parameter rigid
transformation model, because the baseline and followup images
are from the same subject. However, following Scahill et al. (2002),
Paling et al. (2004), and Leow et al. (2009), we also conduct
experiments with a 9-parameter (rigid plus anisotropic scaling)
model. Paling et al. (2004) argued that variation in voxel size over
time in MRI scanners can account for errors in annual atrophy rates
as large as 0.5%, and suggested that global registration with nine
degrees of freedom (rigid transformation plus anisotropic scaling)
may correct for such changes. However, the authors did not find
statistically significant differences between 9 and 6-parameter
global transformations. Leow et al. (2009) adopted 9-parameter
global transformation in their longitudinal analysis of ADNI data. In
one of our experiments below, we compare six and nine-parameter
global registration in terms of atrophy estimation bias and power.
However, in all other experiments, we use the six-parameter rigid
model.

Deformable registration
Deformable registration computes a spatially varying mapping

between a pair of images, such that the similarity between points
linked by the mapping is maximized. There are many deformable
registration approaches available in the literature: (Christensen et
al., 1997; Rueckert et al., 1999; Ashburner and Friston, 1999; Crum
et al., 2005; Beg et al., 2005), just to name a few. This paper
employs the Symmetric Normalization (SyN) approach by Avants
et al. (2008) because of several desirable properties: (1) the
algorithm is symmetric with respect to the two input images;
changing the order of the images does not affect the mapping
computed by SyN; (2) the algorithm guarantees that the mapping
is smooth and invertible (i.e., diffeomorphic), and generates an
inverse mapping; (3) the algorithm admits a wide range of
similarity metrics; and (4) the implementation can be used on
single-processor computer hardware. In a recent comparison of 14
publicly available software implementations of deformable regis-
tration algorithms, SyN was one of the top two performers (Klein
et al., 2009).

We give only a brief summary of SyN in this section, referring the
reader to Avants et al. (2008) for a full description of the method. The
theoretical foundations of SyN are closely linked to large deformation
diffeomorphic metric mapping (Dupuis et al., 1998; Beg et al., 2005).
Please cite this article as: Yushkevich, P.A., et al., Bias in estimation of h
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The main distinction is that SyN optimizes an energy function that is
defined symmetrically with respect to the input images I and J. This
optimization has the form:
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In this formulation, ϕ1(x, t) and ϕ2(x, t) are time-dependent
mappings of the image domain Ω onto itself, with t ∈ [0, 1] the
time variable; v1(x, t) and v2(x, t) are time-dependent vector fields
defined on Ω, over which the objective function is minimized; ||·||L
denotes the Sobolev norm of a vector field under the differential
operator L (see Dupuis et al., 1998; Beg et al., 2005); I(x) and J(x)
are a pair of images defined on the domain Ω; and π is an operator
that measures dissimilarity between images. Since ϕi(x, t) are
defined as the solutions of the flow ordinary differential equation
(2), they are guaranteed to be diffeomorphic if the vector fields v1
(x, t) and v2(x, t) are smooth. SyN employs a greedy optimization
strategy to find ϕi(x, t) and ϕ2(x, t). Greedy optimization is an
alternative to direct optimization over the space of time-varying
vector fields vi(x, t), as in Beg et al. (2005). The greedy approach
offers improved computational performance and requires less
memory, albeit at the cost of lacking certain attractive theoretical
properties of optima computed by direct optimization.

In our experiments, we use SyN with the normalized cross-
correlation image match metric, with the radius of four voxels in
each dimension. Registration is performed using only one resolu-
tion level, at the native resolution of the input images. We do not
use the multi-resolution features of SyN because the deformations
between the baseline and followup images are very local. The
maximum number of iterations allowed in SyN registration is 60.
The smoothing applied to the deformation field at each iteration
uses a Gaussian kernel with σ=2.0 mm in each dimension. The
baseline and followup images themselves are not smoothed. The
step size in the time dimension is 0.2. SyN normalization is
performed using the open-source Advanced Normalization Tools
(ANTS) software implementation (http://picsl.upenn.edu/ants).

Estimation of atrophy
To estimate atrophy in the hippocampus between the baseline

image and the followup image, we use the following simple approach.
We place a volumetric tetrahedral mesh inside of the hippocampus
segmentation, and apply the deformation field computed by the
registration algorithm to each vertex of the mesh. We measure the
volume of each tetrahedron in the mesh before and after the
deformation and add up the volumes. We define atrophy as the ratio

A =
Vbl − Vfu

Vbl
;

where Vbl and Vfu are the volumes of the mesh in the baseline and
followup images, respectively.

The mesh-based approach to estimate atrophy is more direct than
computing the Jacobian determinant of the deformation field at each
voxel of the baseline image and integrating over the hippocampus
segmentation. In the context of non-parametric registration methods
like SyN, the latter requires finite difference approximation, which
ippocampal atrophy using deformation-based morphometry arises
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requires deformation fields to be very smooth in order to avoid
numerical errors.

Composition of rigid and deformable transformations

A subtle, but very important detail is the way in which global and
deformable transformations are combined in this approach. In fact it is
this detail that affects whether bias is present in the results of the
longitudinal study.

Before we proceed, let us define a notation for image resampling.
Given an image I, i.e. a set of values {Ij} defined on a lattice of points
{xj}, we define the resampling of image I under transformation ψ as a
new image I' = R(I, ψ) given by

I
0

j

X
k

L ψ xj
� �

− xk
� �

Ik;

where L is the interpolation kernel, e.g., a box function for nearest
neighbor interpolation, or a tent function for linear interpolation.
Recall that repeated application of interpolation and resampling to an
image results in smoothing and/or aliasing, depending on which
kernel is used. In this paper we use linear interpolation.

Arguably, themost straightforward strategy to combine global and
deformable registration in DBM would be to apply the global
transformation T to the followup image, producing a new resampled
image R(Ifu, T). Then, the metric computation in SyN would take the
form:
Y

R Ibl;/1ð Þ;R R Ifu; Tð Þ;/2ð Þ½ �:

This formulation is clearly non-symmetric, since the baseline image
would be sampled only once, and the second imagewould be sampled
twice. An alternative is to have SyN compose the global and
deformable transformations applied to the followup image, resulting
in the following form:
Y

R Ib1;/1ð Þ;R Ifu;/2BTð Þ½ �:

This form is symmetric in the number of resampling operations
applied to each image. However, at the beginning of the deformable
registration iteration, the baseline image is not really resampled
because ϕ1 is identity, while the followup image undergoes global
transformation by T. So some asymmetry remains, and as we see
below, this asymmetry contributes to bias.

To eliminate asymmetry, we adopt a simple solution motivated by
the work of Guimond et al. (2000), Joshi et al. (2004) and others on
unbiased population-specific atlases for image registration. This
solution involves splitting the global transformation T into two
equal global transformations T1/2, such that T=T1/2 ○ T1/2. To find T1/
2, we write T(x)=Qx + b, where Q is a 3×3 matrix of rotation and,
for the 9-parameter global transformation, scaling; and b is a
translation vector. Then it is easy to verify that the desired transform
is given by

T1=2 xð Þ = Q1=2x + I + Q1=2
� �−1

b; ð3Þ

where I is the identity matrix and Q1/2 is the matrix square root of Q.
The square root of Q can be computed efficiently using the Denman
and Beavers (1976) iterative algorithm (see Appendix A).

By applying T−1/2 to the baseline image and T1/2 to the followup
image, and passing the resampled images to SyN, we can make the
metric computation truly symmetric:

Y
R R Ibl; T

−1=2
� �

;/1

� �
;R R Ifu; T

1=2
� �

;/2

� �h i
: ð4Þ
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Lastly, to avoid resampling each image twice, we can have SyN
compose the global and non-global transformations during com-
putation, leading to the following symmetric formulation:

Y
R Ibl;/1BT

−1=2
� �

;R Ifu;/2BT
1=2

� �h i
: ð5Þ

Fig. 1 illustrates the effects of applying global rigid registration
symmetrically and asymmetrically. Asymmetry in the sampling of
image data causes images passed in to SyN to have different
intensity characteristics, which leads to different atrophy estimates.

For completeness, this paper also examines the effect of symmetry in
thediffeomorphic registrationmethodonbias.With a smallmodification
to the SyN algorithm, we can implement an asymmetric diffeomorphic
registration approach. We simply enforce either v1(x, t)=0 or v2(x, t)
=0 in Eq. (1),which in turn causes eitherϕ1 orϕ2 to become identity. Let
us call this approach asymmetric normalization (aSyN).

With SyN and aSyN, there are nine different ways in which we can
split the transformation between the baseline image and the followup
image. The diffeomorphic transformation can be applied to either of
the images only (with aSyN) or to both images (SyN). Likewise, the
global transformation can be applied to either image, or split into
equal half-transformations using Eq. (3). The metric computations
corresponding to these nine different approaches all have the form

Y
R Ib1;ψb1ð Þ;R Ifu;ψfuð Þ½ �;

where the transformations ψbl and ψfu can be summarized in a
table:

ψb1;ψfuf g =

Id;/2BTf g T−1=2
;/2BT

1=2
n o

T−1
;/2

n o

/1;/2BTf g /1BT
−1=2

;/2BT
1=2

n o
/1BT

−1
;/2

n o

/1; Tf g /1BT
−1=2

; T1=2
n o

/1BT
−1

; Id
n o

8>>><
>>>:

ð6Þ

Notice that in all these computations, the global and deformable
transformations are composed, and at most one image interpolation is
applied to each image. In Experimental results sectionwe examine the
bias associated with each of these nine formulations of registration.

Alternative DBM approach

To show that the bias related to asymmetry in image resampling is
not unique to SyN, we repeat a subset of the experiments with a
different deformable image registration technique. We chose to use
the Image Registration Toolkit (IRTK) from IXICO, Inc., which is the
official implementation of the B-spline based Free-Form Deformation
(FFD) deformable image registration algorithm by Rueckert et al.
(1999). The reasons for selecting this particular algorithm included its
wide use in the literature, the high rating that it received in the recent
evaluation study by Klein et al. (2009), the availability of a free
software implementation, and ease of interfacing between IRTK and
other tools used in this study.

FFD differs from SyN in several aspects. In FFD, the deformable
registration is formulated asymmetrically, i.e., the deformation is
applied to one of the images only. Thedeformation in FFD is parametric
and smooth by construction. Smoothness is controlled by the spacing
of B-spline control points. The parameters of the FFD algorithm were
largely set to their defaults, with the following exceptions. As in SyN,
registration was performed at the native image resolution; i.e., the
multi-resolution registration schemewas not employed. This is due to
the very local nature of the anatomical changes that the registration is
intended to measure. The B-spline control point spacing was set to
4.8 mm in all three dimensions, allowing for a smooth deformation.
The Gaussian blurring parameter for the baseline and followup images
was set to 0.6 mm. The normalized mutual information metric
ippocampal atrophy using deformation-based morphometry arises
I data, NeuroImage (2010), doi:10.1016/j.neuroimage.2009.12.007
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Fig. 1. Example of DBM configurations with different resampling of the baseline image Ibl and followup image Ifu. In the first column, the global transformation is applied only to Ifu.
In the second column, the transformation is split equally between Ibl and Ifu. In the last column, the transformation is applied only to Ibl. The two images in the first column have
different degree of smoothing and aliasing, as do the two images in the last column. This leads to bias when registration is used to compute atrophy between these pairs of images.
The two images in the middle column have roughly the same degree of smoothing and aliasing. In the bottom row, the Jacobian map resulting from applying SyN to the resampled
images is shown. The Jacobian map is computed using a tetrahedral mesh, and is plotted here using volume rendering. Overall, there is most volume reduction in the leftmost
column, and least volume reduction in the rightmost column. These columns correspond to FU/HW, HW/HW and BL/HW in Tables 2–4.

3 The term “regression” is an overstatement here, as the regression line is simply the
line passing through the two time points; however, the concept generalizes to more
time points.
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(Studholme et al., 1997) was used. We purposely used a different
metric from SyN experiments. It is by no means our intention to
compare FFD to SyN in terms of registration accuracy or sensitivity to
atrophy inMCI. Rather,we aim to demonstrate that the issues of bias in
DBM of longitudinal data are not limited to a particular method or a
particular metric.

Direct estimation of bias

The ADNI dataset provides a unique opportunity to estimate
registration bias in a controlled experiment. Recall from Subjects and
imaging data section that each ADNI imaging session includes a pair of
MP-RAGE images, one ranked superior (Irs) and one ranked inferior
(Iri). Since no longitudinal changes have taken place between these
scans, we would expect the average atrophy detected by the
registration to be zero. However, since some systematic differences
may be present between the images acquired earlier and later in an
MRI scan, or between inferior and superior MRI images, we randomly
assign each of two images labels “baseline” and “followup,” and then
perform the DBM longitudinal analysis on these data. The only
difference between this bias estimation experiment and the actual
longitudinal study is that we do not repeat the hippocampus
segmentation effort for the former. Hippocampi were segmented in
the post-processed “superior” MRI images. We map these segmenta-
Please cite this article as: Yushkevich, P.A., et al., Bias in estimation of h
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tions into the images Irs and Iri by global registration to the post-
processed image.

Experimental results

Metrics used to compare transformation models

We use several metrics to analyze the bias and statistical power of
different DBM-based atrophy estimation configurations. Bias can be
estimated in two distinct ways. The first way is the direct estimation
of bias from the randomized experiment described in Direct
estimation of bias section.We report themean and standard deviation
of the atrophy rate estimated in this experiment for each flavor of
DBM discussed above. For a DBM configuration to be unbiased, mean
atrophy must not be significantly different from zero.

A complementary way to measure bias uses data from the “real”
longitudinal experiment, where atrophy is computed between the
baseline image of each subject and the 6 and 12 month followup
images. For each group, the intercept of the regression line fitted to
the atrophy estimated at the two time points should be zero.3 We
ippocampal atrophy using deformation-based morphometry arises
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Table 2
Direct estimation of bias for nine DBM configurations summarized in Eq. (6). The
configurations are arranged in a 3×3 table. The columns correspond to three different
ways to divide the global transformation between the baseline and followup image
during registration. Column “BL” indicates that the transformation is applied to the
baseline image only; “HW” means the transformation is split halfway between the two
images; “FU” means that the transformation is applied to the followup image only.
Likewise, the rows correspond to different ways to split the non-global transformation
between the images. The cell “HW”,“HW” corresponds to fully symmetric registration. For
each cell in the table, the sample mean and standard deviation of atrophy estimated in
the bias experiment are given. Additionally, the p-value for the null hypothesis that
atrophy is zero (i.e., no bias) is given.

Rigid

BL HW FU

Non-rigid BL μ: −3.30% 0.25% 2.11%
σ: 1.33% 1.11% 1.72%
p-value: 0.000 0.010 0.000

HW μ: −3.04% 0.08% 2.87%
σ: 1.55% 0.99% 1.45%
p-value: 0.000 0.341 0.000

FU μ: −2.34% 0.03% 3.12%
σ: 1.62% 1.07% 1.39%
p-value: 0.000 0.742 0.000
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report the mean and standard deviation of the intercept value for the
MCI group and control group. We also plot the empirical cumulative
distribution functions of 6 and 12-month atrophy for the two groups.

To measure the power of DBM-based atrophy estimation, we
compare the atrophy rates between control and MCI groups using
data from baseline and 12 months. We report the mean and standard
deviation of 12-month atrophy for each group, as well as the p-value
of the Student's t-test with the null hypothesis that the twomeans are
equal, and the alternative hypothesis that atrophy is greater in MCI.
We also perform power analysis and report the sample size required
to detect a 25% reduction in MCI atrophy relative to the control
atrophy with statistical power β=0.8, significance level α=0.05 and
two-sided alternative hypothesis. The sample size calculation is given
by the formula:

N = 2
z1−α =2 + zβ

� �
σMCI

0:25 μMCI−μCTLð Þ

0
@

1
A

2

; ð7Þ

where zt is the t-th quantile of the normal distribution, μMCI and μCTL
are the estimates of the mean atrophy in MCI and control populations,
and σMCI is the estimate of the standard deviation of atrophy in the
MCI population. Smaller sample size indicates greater power of the
DBM-based atrophy estimation method.

Asymmetry in rigid and deformable transformations

In Composition of rigid and deformable transformations section
we described nine DBM configurations in which global and deform-
able transformations are divided differently between the baseline
image and the followup image. Specifically, each type of transforma-
tion can be applied only to the baseline image, only to the followup
image, or split equally between the two images. The direct bias
estimated for each of these nine configurations is shown in Table 2.
For each configuration, the table lists the mean atrophy estimated in
the bias experiment, the standard deviation, and the p-value from a
Student's t-test with null hypothesis of no atrophy (i.e., no bias). The
results show a clear effect of asymmetry in the global component on
the bias. When the global component is applied to the baseline image,
there is significant negative bias, and when the global component is
applied to the followup image, the bias is significantly positive. When
the global component is split equally between the two images, the
bias is not significant, except in one configuration, where it reaches
significance with p=0.01.

Asymmetry in the deformable component of the transformation
does not have as obvious an effect on the bias. When the global
transformation is applied asymmetrically, the bias is increased slightly
when the deformable transformation is applied on the same side as
the global one (cells BL/BL and FU/FU in Table 2), and decreased when
the two transformations are applied on opposite sides (cells BL/FU
and FU/BL). This effect may be explained by the fact that in
configurations BL/BL and FU/FU one of the images is assigned the
identity transformation and is not interpolated at all, while in BL/FU
and FU/BL both images are interpolated, although asymmetrically.

Fig. 2 shows the cumulative distribution plots for 6- and 12-month
atrophy in MCI and control groups. One plot is shown for each of the
nine configurations. The plots clearly indicate that in experiments
where the global registration is applied asymmetrically, bias is
present. This visually confirms the findings from the direct bias
estimation experiment in real longitudinal data. Table 3 further
confirms this by listing for each cohort the average intercept of the
regression line fitted to each subject's 6- and 12-month atrophy
values. This intercept is an alternative way of estimating bias, and the
general sense of the results from the direct bias estimation
experiment is maintained. Asymmetrical application of the global
transformation results in 2–3% bias, while asymmetry in the
Please cite this article as: Yushkevich, P.A., et al., Bias in estimation of h
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deformable registration has little effect on bias. The bias is of the
same order of magnitude for control subjects and MCI patients. A t-
test comparing bias between these two cohorts in each of the nine
configurations yields two-sided p-values that range from 0.32 to 0.95,
indicating that in neither of these configurations the difference in bias
between cohorts is significant. This suggests that atrophy compar-
isons between cohorts should not be significantly affected by the
presence of DBM-related bias.

The effect of asymmetry in global and deformable transformations
on the power of the MCI–control group difference comparison is
summarized in Table 4. For each of the nine symmetry/asymmetry
configurations, the table lists the mean and standard deviation of
atrophy in each group, the one-sided p-value for the Student's t-test,
and the sample size for the power analysis described in Metrics used
to compare transformation models section. Lastly, the 90% confidence
interval for the sample size is given, which is computed using the bias-
corrected and accelerated (BCα) bootstrap method (Efron, 1987).
There is substantial overlap between the confidence intervals for all
nine configurations. The results in Table 4 confirm the results of
intercept analysis: asymmetry appears to have no significant effect on
the power of MCI–control group difference comparison.

Repeated interpolation

In the nine configurations presented above, the deformable and
global components of the deformation are always composed, so that no
image undergoes interpolation more than once. This is not always done
in practice in DBM studies. Rigid and deformable registration may be
performed using different tools, and theremight not be away to pass the
global transformation to the deformable registration method as the
initialization. The alternative is to resample images after global
transformation and then perform deformable registration on resampled
images. In this section we examine the effect of this extra level of
interpolation on the bias and power of DBM-based atrophy estimation.

For simplicity, we only consider two of the nine configurations in
the previous experiment: the fully symmetric configuration (HW/HW
in Table 2) and the configuration where the baseline image is fixed
and all transformation is applied to the followup image (FU/FU). In the
HW/HW case, the metric computation with one level of resampling is
given in Eq. (5), and the computation with two levels of resampling is
in Eq. (4). The results of the comparison are in Table 5. Overall,
repeated interpolation affects the asymmetric DBM configuration
much more than the symmetric configuration. Curiously, in the
symmetric DBM configuration with repeated interpolation,
ippocampal atrophy using deformation-based morphometry arises
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Fig. 2. Empirical cumulative distribution plots (CDF) of hippocampal atrophy over 6 and 12 months in MCI and control groups. The nine plots correspond to the nine DBM
configurations in Eq. (6). In absence of bias, we expect the four curves to be centered slightly to the right of the origin. However, in many DBM configurations, the curves are shifted
either to the left or to the right, indicating negative or positive bias. The order of the CDF curves (6 month control, 12 month control, 6 month MCI, 12 month MCI) and the separation
between them is roughly preserved in all DBM configurations.
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statistically significant bias is detected in the direct bias estimation
experiment (p=0.03). In the asymmetric DBM configuration, adding
a second level of interpolation increases the bias detected in both
direct and intercept-based experiments by approximately 2%.

Alternative deformable registration approach

Table 6 summarizes the findings of the experiments using the
alternative DBM pipeline, which uses the Rueckert et al. (1999) free-
form deformation (FFD) registration approach. In the FFD approach, it
is not possible to make registration fully symmetric, because the
deformable transformation in FFD registration is always applied to just
one image. Of the three columns in Table 6, columns BL/FU andHW/FU
are both “more symmetric” than the column “FU/FU”. In configuration
BL/FU, all of the global transformation is assigned to the baseline
image, and all of the deformable transformation is assigned to the
followup image. In configuration HW/FU, the global transformation is
split between the two images. In FU/FU all the transformation is
applied to the followup image; the baseline image is sampled in its
native space. As we would expect from the SyN results, the two “more
symmetric” configurations result in less bias than the “less symmetric”
configuration FU/FU. Indeed, in intercept experiments, the configura-
Please cite this article as: Yushkevich, P.A., et al., Bias in estimation of h
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tion HW/FU is the only one to yield insignificant bias. On the other
hand, the direct bias estimation experiment finds significant bias in
both “more symmetric” configurations, although the sign of the bias is
negative for BL/FU and positive for HW/FU. In the 12- month
longitudinal experiment, the BL/FU configuration of FFD yields the
best statistical power of all experiments in this paper (N=289).

Fig. 3A shows a scatter plot of SyN-based atrophy values in the HW/
HW configuration and FFD-based atrophy values with symmetric
application of the global transformation. The atrophy values are
significantly correlated, R2=0.38, F(1, 115)=70, p ≪ 0.0001, although
much of the variance in the data is not described by the correlation. By
contrast, the correlation between atrophy values computed by different
SyN configurations (HW/HW vs. FU/FU), plotted in Fig. 3B, is much
greater, R2=0.79, F(1, 120)=446.3, p≪ 0.0001);

Alternative global registration approaches

Table 7 compares atrophy values and intercept-based bias
statistics for DBM performed with six and nine-parameter global
registration. Results are shown for two SyN-based DBM configura-
tions: HW/HW and FU/FU. The results are remarkably similar for six
and nine-parameter registration. Fig. 3C plots the correlation between
ippocampal atrophy using deformation-based morphometry arises
I data, NeuroImage (2010), doi:10.1016/j.neuroimage.2009.12.007
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Table 3
Intercept-based atrophy bias estimation in nine configurations of DBM. See caption to
Table 2 for the meaning of the rows and columns. Each cell in the table gives the mean
intercept value of the regression line fitted to the 6- and 12-month atrophy values, as
well as the standard deviation of the intercept and the p-value of the t-test with the null
hypothesis of zero intercept (i.e., no bias).

MCI group

Non-rigid Rigid

BL HW FU

BL μ: −2.19% 0.49% 2.39%
σ: 3.62% 2.50% 3.58%
p-value: 0.000 0.122 0.000

HW μ: −2.14% 0.50% 3.26%
σ: 3.63% 2.49% 3.41%
p-value: 0.000 0.115 0.000

FU μ: −1.50% 0.25% 3.81%
σ: 3.25% 2.54% 2.99%
p-value: 0.001 0.439 0.000

Control group

Non-rigid Rigid

BL HW FU

BL μ: −2.78% 0.13% 1.91%
σ: 2.57% 2.19% 2.72%
p-value: 0.000 0.704 0.000

HW Μ: −2.23% 0.06% 2.89%
Σ: 3.13% 2.18% 2.62%
p-value: 0.000 0.850 0.000

FU Μ: −1.54% 0.17% 3.97%
σ: 3.16% 2.38% 2.18%
p-value: 0.002 0.632 0.000

Table 5
Results of comparison between DBM configurations that perform resampling once (by
composing global and deformable transformations) and DBM configurations that
perform resampling twice (by applying the global and deformable transformations in
sequence). The rows in the table correspond to the rows in Tables 2, 3 and 4.

HW/HW FU/FU

Resample
once

Resample
twice

Resample
once

Resample
twice

Direct bias
estimation

μ: 0.08% 0.22% 3.12% 5.15%
σ: 0.99% 1.12% 1.39% 1.81%
p-
value:

0.34 0.03 0.0000 0.0000

Intercept-based
bias estimation

MCI μ: 0.50% 0.40% 3.81% 6.04%
σ: 2.49% 2.67% 2.99% 3.45%
p-
value:

0.12 0.23 0.0000 0.0000

CTL μ: 0.06% 0.33% 3.97% 6.19%
σ: 2.18% 2.12% 2.18% 2.56%
p-
value:

0.85 0.31 0.0000 0.0000

12-month
longitudinal
experiment

μMCI: 2.04% 2.16% 5.80% 8.25%
σMCI: 1.91% 2.11% 1.80% 2.12%
μCTL: 0.69% 0.60% 4.42% 6.78%
σCTL: 1.10% 1.21% 1.19% 1.71%
p-
value:

3.2E−06 1.2E−06 1.3E−06 4.9E−05

N: 508 465 426 529
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atrophy values estimated using the HW/HW configuration with 6-
parameter global transformation and atrophy values estimated by the
same configuration with 9-parameter global transformation. The
atrophy values are very highly correlated, R2=0.80, F(1, 120)=494,
p ≪ 0.001. This suggests that in ADNI data, the effect of changing
voxel size is largely negligible, at least from the point of view of
hippocampal atrophy analysis.
Table 4
Summary of results of 12-month longitudinal atrophy estimation experiments using
nine DBM configurations summarized in Eq. (6). See caption to Table 2 for the meaning
of the rows and columns. For each cell, the mean atrophy and standard deviation are
given in the MCI and control groups, as well as the p-value of the MCI–control group
comparison, and the sample size needed to detect 25% reduction inMCI atrophy relative
to control atrophy with 80% power and significance level 0.05. Lower sample size
indicates more powerful atrophy estimation.

Non-rigid Rigid

BL HW FU

BL μMCI: −0.07% 2.31% 3.56%
σMCI: 2.50% 1.92% 1.84%
μCTL: −1.88% 0.91% 2.58%
σCTL: 1.64% 1.13% 1.55%
p-value: 4.52E−06 1.76E−06 1.89E−03
N: 482 474 892
CI0.9 (N): 263–1230 265–1183 386–4287

HW μMCI: 0.36% 2.04% 4.78%
σMCI: 2.55% 1.91% 1.85%
μCTL: −1.57% 0.69% 3.50%
σCTL: 1.58% 1.10% 1.36%
p-value: 1.06E−06 3.18E−06 2.1E−05
N: 438 508 519
CI0.9 (N): 240–1146 283–1280 272–1459

FU μMCI: 0.93% 1.69% 5.80%
σMCI: 2.35% 1.91% 1.80%
μCTL: −0.96% 0.34% 4.42%
σCTL: 1.48% 1.11% 1.19%
p-value: 3.05E−07 2.93E−06 1.32E−06
N: 391 499 426
CI0.9 (N): 218–1025 279–1214 232–1047

Please cite this article as: Yushkevich, P.A., et al., Bias in estimation of h
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In addition, Table 7 provides a comparison between rigid
registration in FLIRT global and the RREG rigid registration tool that
is part of the IRTK software package. The measures of atrophy in each
DBM configuration are remarkably similar. This indicates that the bias
discussed in this paper is not endemic to a specific global registration
tool.

Discussion

The most important finding of this paper is that the bias in DBM-
based longitudinal analysis of hippocampal atrophy can largely be
attributed to the asymmetry in the application of global transformations.
This finding is important because it implies that the step of bias
elimination can be introduced into researchers' data processing
pipelines in a fairly transparent manner, without requiring changes
Table 6
Results of bias analysis using the Rueckert et al. (1999) free-form deformation
approach. The three columns of numbers correspond to three DBM configurations. In
configuration “BL”, the global transformation is applied to the baseline image only. In
configuration “HW”, the global transformation is split between the baseline and
followup images. In configuration “FU” the global transformation is applied to the
followup image. In all three configurations, global and deformable transformations are
composed whenever possible, so each image is resampled only once. The rows in the
table correspond to the rows in Tables 2, 3 and 4.

Rigid/Deformable config-n

BL/FU HW/FU FU/FU

Direct bias estimation μ: −0.65% 0.59% 1.41%
σ: 1.25% 1.12% 1.19%
p-value: 0.0000 0.0000 0.0000

Intercept-based
bias estimation

MCI μ: −1.62% −0.42% 0.92%
σ: 3.98% 3.70% 3.72%
p-value: 0.0027 0.39 0.054

CTL μ: −1.05% −0.04% 1.50%
σ: 2.89% 3.42% 3.27%
p-value: 0.021 0.94 0.0039

12-month
longitudinal
experiment

μMCI: 2.23% 2.49% 4.15%
σMCI: 2.47% 2.65% 2.61%
μCTL: −0.07% 0.79% 2.35%
σCTL: 1.52% 1.89% 1.88%
p-value: 1.01E−08 9.18E−05 2.02E−05
N: 289 612 527

ippocampal atrophy using deformation-based morphometry arises
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Fig. 3. (A) Correlation between hippocampal atrophy values computed by SyN-based
DBM (HW/HW configuration) and FFD-based DBM (HW/FU) configuration. Each circle
in the scatter plot represents a subject. Atrophy values are averaged for the left and
right hippocampi. A regression line is fitted to the atrophy values. (B) Correlation
between hippocampal atrophy values computed by two SyN-based DBM configura-
tions: a fully symmetric HW/HW configuration, and the fully asymmetric FU/FU
configuration. (C) Correlation between atrophy estimated using 6-parameter rigid
global registration and 9-parameter (rigid + anisotropic scaling) global registration.
This experiment uses SyN-based DBM in the HW/HW configuration.
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to the underlying complex image registration software. In particular,
it suggests that specialized metrics that account for bias (Leow et al.,
2007) may not be required in the context of atrophy estimation in the
hippocampus.

Why does asymmetry in global transformation affect the bias in
SyN experiments when other factors (asymmetry in deformable
transformation, number of interpolations, the registration method)
seem to have so little effect on it? One plausible explanation is that the
deformable transformation between the baseline image and the
followup image is largely determined by the initial gradient of the
image match metric. In greedy diffeomorphic registration, the overall
deformation is computed by repeatedly taking this gradient, smooth-
ing it and composing the resulting smooth elastic deformations over
multiple iterations. However, since the deformation between the
baseline image and followup image is small to begin with, the initial
gradient may account for much of the total deformation. Now, if the
global transformation is applied asymmetrically, at the time the initial
gradient is computed, one of the images has undergone a resampling/
interpolation operation (which smoothes the image) and the other
has not. Thus, much of the initial gradient may be driven by
differences in sampling and interpolation, rather than anatomical
differences. When the global transformation is symmetric, the same
kind of resampling/interpolation is applied to both images. So the
initial gradient of the metric reflects anatomical differences, as well as
noise. Whether the deformable registration is symmetric or not does
not matter, because it is primarily driven by the initial gradient.

The idea of splitting the global transformation via thematrix square
root operation is not new. It falls within the unbiased atlas framework
proposed by Guimond et al. (2000); Davis et al. (2004); Joshi et al.
(2004) and adoptedbymany studies. This frameworkfinds the Frechét
mean of the input anatomies in the space of image transformations.
The Frechét mean of the baseline image and the followup image,
within the space of global transformations, is precisely the matrix
square root of the global transformation estimated between these two
images by global registration. Of course, the unbiased atlas formulation
also applies the Frechét mean to the diffeomorphic transformations.
However, based on our findings, this stepmay not be required, at least
in the context of hippocampal atrophy.

The power of the MCI vs. control comparison did not substantially
change under different DBM configurations. This suggests that the
effect of longitudinal bias may be altogether negligible when
reporting group differences in atrophy. In the context of designing
clinical trials, this suggests that sample size should be calculated re-
lative to the control atrophy rate. In other words, when we ask, “how
many subjects are needed in each cohort to detect an x% reduction in
atrophy in the treatment group with given statistical power and given
alpha level,” the term “reduction” should refer to the relative change
from theMCI rate of atrophy to the control rate of atrophy, rather than
absolute reduction in the MCI rate of atrophy. However, when
absolute atrophy rate is used for power calculations, severe under-
powering can occur.

Relationship to prior work

Bias in longitudinal image registration has been the subject of
several papers in the recent years. Leow et al. (2007) introduced an
unbiased DBM approach based on an additional regularization term
that penalizes the logarithm of the Jacobian determinant in the non-
rigid transformation. Yanovsky et al. (2009) further refined this
method by introducing a symmetric unbiased DBM technique. The
authors evaluated the technique in data from 10 ADNI AD subjects and
10 controls. As in the present study, Yanovsky et al. (2009) use scans
acquired at short intervals to assess DBM-related bias in absence of
real atrophy. They find that the symmetric unbiased and asymmetric
unbiased DBM substantially reduce bias vis-à-vis methods that do not
control for bias. However, the unbiased approaches from these
Please cite this article as: Yushkevich, P.A., et al., Bias in estimation of h
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authors do not examine the effects of asymmetry in global registration
on bias. Hua et al. (2009) compared atrophy estimation in a large
ADNI cohort using different configurations of the Leow et al. unbiased
registration framework, including 6-parameter and 9-parameter
global registration. However, the effect of symmetry in global
transformation was not considered. As such, our paper arrives at a
different set of conclusions regarding bias. Our results suggest that
ippocampal atrophy using deformation-based morphometry arises
I data, NeuroImage (2010), doi:10.1016/j.neuroimage.2009.12.007
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4 Schuff et al. (2009) report standard errors; we convert to sample standard
deviation to be consistent with the rest of the paper and allow comparison across
different sample sizes.

Table 7
Comparison of three global registration approaches: FLIRT tool with six-parameter rigid registration, FLIRT with nine-parameter linear registration (rigid plus anisotropic scaling),
and the RREG tool from IRTK with six-parameter rigid registration. The table lists intercept-based atrophy bias estimates and 12-month atrophy estimates for two configurations of
DBM (symmetric HW/HW configuration and asymmetric FU/FU configuration), each implemented with 6 or 9 degree-of-freedom global registration. The rows in the table
correspond to the rows in Tables 3 and 4.

HW/HW FU/FU

6 d.o.f. FLIRT 9 d.o.f. FLIRT 6 d.o.f. RREG 6 d.o.f. FLIRT 9 d.o.f. FLIRT 6 d.o.f. RREG

Intercept-based bias estimation MCI μ: 0.50% 0.47% 0.45% 3.81% 3.89% 3.93%
σ: 2.49% 2.69% 2.47% 2.99% 3.14% 2.83%
p-value: 0.12 0.17 0.16 0.0000 0.0000 0.0000

CTL μ: 0.06% −0.01% 0.13% 3.97% 3.92% 4.02%
σ: 2.18% 2.03% 2.09% 2.18% 2.21% 2.13%
p-value: 0.85 0.97 0.68 0.0000 0.0000 0.0000

12-month longitudinal experiment μMCI: 2.04% 2.05% 2.10% 5.80% 5.81% 5.86%
σMCI: 1.91% 2.01% 1.90% 1.80% 1.97% 1.83%
μCTL: 0.69% 0.54% 0.71% 4.42% 4.30% 4.44%
σCTL: 1.10% 1.32% 1.11% 1.19% 1.24% 1.23%
p-value: 3.2E−06 1.8E−06 1.6E−06 1.3E−06 9.6E−07 1.2E−06
N: 508 441 470 426 430 420

5 This is an approximation obtained by applying Eq. (7) to the values reported in
Schuff et al. (2009).
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symmetry in the application of global transformation is sufficient to
eliminate significant bias. By contrast, the papers discussed above
suggest that bias reduction should be enveloped into the regulariza-
tion prior of deformable registration. It is important to note that our
results are constrained to a small anatomical region (the hippocam-
pus) and may not extrapolate to other brain regions.

Camara et al. (2008) used a synthetic dataset with known gold
standard atrophy to compare the accuracy of atrophy estimation by
two global atrophy estimation techniques (Freeborough and Fox,
1997; Smith et al., 2002) and two DBM techniques. The two DBM
techniques were the FFD method (Rueckert et al., 1999) and a fluid-
based image registration method (Crum et al., 2005). The authors
found statistically significant differences in atrophy rates reported by
DBM techniques and the gold standard in presence of simulated
deformations consistent with AD pathology (DBM techniques under-
estimated atrophy), but did not find significant differences when
simulated atrophy was consistent with healthy aging. The paper did
not discuss the specifics of how global transformations were applied
to the data, nor the amount of smoothing applied to the images.
Nevertheless, it is curious that the bias detected on simulated data
was in the opposite direction of the results presented in this paper.

One of the explanations for this difference lies in the way that the
volume change induced on the hippocampus by a given deformation is
calculated. We use a mesh-based calculation, where the deformation
field is applied to each vertex of a volumetric tetrahedral mesh and the
change in mesh volume is calculated exactly. Camara et al. (2008) and
many other authors integrate the determinant of the Jacobianmatrix of
the deformation over the region of interest.When used in the context of
non-parametric registration (e.g., SyN), the latter calculation uses de-
formation field values from voxels adjacent to the region of interest,
since to calculate the Jacobian discretely, a finite difference approxima-
tion is used. Many of the voxels adjacent to the hippocampus are in the
cerebrospinal fluid, which expands when the hippocampus shrinks.
Thus mixing deformation field values across hippocampus boundaries
can reduce atrophy estimates, and cause underestimation of atrophy.

Other authors have argued against direct application of DBM for
longitudinal atrophy estimation. Davatzikos et al. (2001) proposed
RAVENS maps, which avoid Jacobian computations, and instead
preserve tissue density under deformable transformations. Stud-
holme et al. (2003) argued that the Jacobian map should be spatially
filtered using a measure of normalization uncertainty derived from
the normalization procedure. Rohlfing (2006) examined the Jacobian
fields yielded by different DBM approaches and found them to be
strikingly different despite similar region-wise normalization accura-
cy performance. Despite these widely cited limitations, DBM remains
widely used for longitudinal atrophy analysis.
Please cite this article as: Yushkevich, P.A., et al., Bias in estimation of h
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Utility for clinical studies

The DBM-based atrophy estimation approach, both in absence and
presence of bias, finds statistically significant differences between 1-
year hippocampal atrophy in MCI patients and atrophy in controls.
Particularly, the statistical power of DBM-based analysis is substan-
tially greater than in the analysis of ADNI data that uses independent
semi-automatic segmentation of the hippocampus in multiple time-
points (Schuff et al., 2009). Based on 1.5 T MRI data from 127 controls
and 226 MCI patients, Schuff et al. (2009) report annual percent
change of −0.8±5.6 in controls and −2.6±4.5 in MCI patients.4 In
our analysis of 3 TMRI, we report annual percent change of−0.7±1.1
in controls and −2.0±1.9 in MCI patients (these are the results for
the symmetric HW/HW comparison in Table 4). Our results detect a
change in MCI that is less in magnitude than in Schuff et al. (2009),
although the 95% confidence intervals for our study (1.6–2.5) and
Schuff et al. study (2.0–3.2) overlap. On the other hand, the variance
in the DBM-based approach is significantly reduced. In terms of
sample size calculation, our calculation (see Metrics used to compare
transformation models section) yields N=1570 for the Schuff et al.
(2009) study5 and N=508 for DBM-based estimation. It is unlikely
that these findings are due to differences in MRI modality, as it was
recently reported that field strength in ADNI does not significantly
affect atrophy estimates (Ho et al., in press). This indicates that DBM-
based atrophy estimation is more sensitive than comparison of
hippocampal volumes extracted using semi-automatic segmentation.

Limitations

One of the limitations of the current study is that it only assesses
additive bias in atrophy estimation. There are other types of bias that
our methods are not capable of detecting. For example, certain DBM
configurations may introduce multiplicative bias that cannot be
detected by the two experiments used in this study. In the direct
bias estimation experiment, true atrophy is zero, so multiplicative
effect cannot be seen. In the intercept-based experiment, multiplica-
tive bias cannot be detected if the factor by which true atrophy is
multiplied is the same at 6 and 12 months. Multiplicative bias may
explain why the averageMCI atrophy detected by the symmetric DBM
ippocampal atrophy using deformation-based morphometry arises
I data, NeuroImage (2010), doi:10.1016/j.neuroimage.2009.12.007
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configuration is lower than the atrophy reported by Schuff et al.
(2009).

Intercept-based atrophy estimation makes an underlying assump-
tion that atrophy is linear over time. This assumption is not
uncommon in the evaluation of atrophy estimation techniques (Fox
and Freeborough, 1997). The fact that in the unbiased configuration
on DBM we observe intercept values not significantly different from
zero substantiates this assumption. Additional experiments on ADNI
data from all available time points would allow this assumption to be
evaluated more extensively.

In the SyN experiments, the results of direct bias estimation and
intercept-based bias estimation experiments are overall very consis-
tent. But in the FFD experiment (Table 6), there was some
inconsistency between these two ways of estimating bias. Direct
estimation finds significant bias in the BL/FU and HW/FU configura-
tions whereas intercept-based estimation finds significant bias in BL/
FU but not in HW/FU. However, we do not expect bias to be zero in
either of these experiments because the deformable registration
(FFD) is not fully symmetric. Both configurations are less asymmetric
than FU/FU, in which substantial bias is detected using bothmeasures.
So overall, the FFD results fit the pattern of SyN results. Nevertheless, a
more extensive evaluation of bias in parametric registration methods
is warranted.

Our analysis does not take into consideration the heterogeneity of
the clinical groups, particularly the MCI subjects. The only accurate
way of determining AD pathology is through autopsy, andmany of the
MCI patients likely do not have AD pathology. CSF biomarkers are
available for a subset of ADNI subjects and may have been used to
identify MCI subjects with an AD-like chemical biomarker profile.
Reducing heterogeneity in the cohorts would probably reduce the
variance in atrophy in each cohort as well as the sample size for the
MCI-control comparisons. However, there would not be an obvious
effect on the bias of DBM methodology. Hence, we felt that for the
purpose of evaluating bias in DBM methodology, such partitioning of
the subjects was not necessary.

The experiments in this paper cannot detect spatial biases in
atrophy estimation. It is entirely possible that atrophy detected in the
hippocampus is partially attributable to atrophy in other surrounding
structures. DBM, by design, cannot estimate change in the volume of a
particular small region independently of surrounding image regions.
Deformation fields in DBM are smoothed, which causes propagation
of information across voxels. Our study cannot detect and measure
this type of bias.

Conclusions

In summary, we presented a study of hippocampal atrophy in
patients with mild cognitive impairment using 3 T MRI data from
ADNI. Our atrophy estimation used deformation-basedmorphometry,
with some specific choices of parameters tuned for fine-scale
longitudinal change detection. These included minimal smoothing
of image data; relatively small amount of regularization of deforma-
tion fields; precise segmentation of the region of interest in baseline
MRI scans; and volume change computation using volumetric meshes
rather than Jacobian determinant integration. We found that “naive”
application of these methods to ADNI MRI not only produced
excellent statistical power but also led to unwanted additive bias in
atrophy estimates. Examining the possible causes of bias, we
discovered that asymmetry in the application of the global transfor-
mation between serial MRI images is the leading contributor to bias,
whereas the asymmetry in the high-dimensional deformable trans-
formation is less implicated in the bias. This finding appears to
transcend the choice of deformable image registration algorithm used,
although only two methods were compared in the present study. This
finding appears to transcend the choice of deformable image
registration algorithm used, although only two methods were
Please cite this article as: Yushkevich, P.A., et al., Bias in estimation of h
from asymmetric global normalization: An illustration in ADNI 3 T MR
compared in the present study. Symmetric application of global
transformations requires only a simple modification to existing image
analysis protocols, and we are hopeful that other longitudinal studies
may benefit from our findings.
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Appendix A

The square root of a matrix Q can be computed using the iterative
algorithm proposed by Denman and Beavers (1976):

Ak + 1 =
1
2

Ak + B−1
k

� �
; Bk + 1 =

1
2

Bk + B−1
k

� �
;

where

A0 = Q ; B0 = I:
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